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Abstract. The phonon effects on a multichannel resonant-level model have been studied by a
bosonization technique and canonical transformations. We found that the model can be mapped
onto a single-channel Kondo model and the non-Fermi-liquid transition is modified by local
electron–phonon interaction. At strong interaction, only one channel of conducting electrons is
necessary in order to realize this transition and it is the phonon effects that control the behaviour
of the system.

1. Introduction

There has been increasing interest in non-Fermi-liquid (non-FL) behaviour in strongly
correlated electron systems; as a notable example, a phenomenological marginal-FL model,
proposed by Varmaet al [1], describes successfully the normal state of the copper oxide
based high-Tc superconductors. Much experimental evidence of non-FL behaviour has also
been reported for several heavy-fermion systems [2]. Thus at present, one central issue is
how to derive universal non-FL behaviour from strong electron correlations. In particular,
it is of great interest to study those models whose properties can be obtained either exactly
or within controllable approximations, exhibiting a transition from FL to non-FL behaviour
as some parameters of the models are adjusted.

Recently the generalized Anderson model [3, 4] and its spinless version, the multichannel
resonant-level (MCRL) model [5, 6, 7] have been studied to show the possible FL–non-FL
transition. It is well known that the single-channel resonant-level model can be derived from
an antiferromagnetic Kondo model through Tomonaga–Luttinger bosonization and it exhibits
the local FL behaviour below the Kondo temperature [8]. The generalization of the single-
channel resonant-level model through considering finite-range Coulomb repulsion leads to
a coupling of the local electron to other orbital channels, as well as the channel which has
the same symmetry as the local orbital. The MCRL model Hamiltonian therefore contains
new ingredients other than the usual single-channel resonant-level model, which in fact is
a multichannel x-ray edge model displaying a local non-FL behaviour [9]. The essential
physics of the MCRL model thus reflects the competition between the FL-type resonant-
level model and the non-FL-type x-ray edge model. Some authors have demonstrated
that the MCRL model can be transformed to a single-channel (SC) Kondo model. With
redefinition of parameters the MCRL model can be mapped onto a ferromagnetic or an
antiferromagnetic Kondo model, which respectively correspond to FL or non-FL behaviour.
There are two ways [6, 7] to realize this mapping. One concerns the similarity of their
partition functions [6], while the other considers Hamiltonian mapping at operator level
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[7]. In fact the FL or non-FL behaviour in the MCRL model depends on fluctuation of the
local electron. If it tends to overlap with conduction electrons, i.e., if the local electron
is screened by conduction electrons, then the FL behaviour emerges; in contrast, if the
local electron fluctuation is separated from the electron gas we have a non-FL degenerate
ground state. In the MCRL model one can prohibit the fluctuation of the local electron by
means of increasing the channel number. It has been proven that in order to observe the
non-FL behaviour the channel number must be at leastthree [6], in the case of sufficiently
strong repulsive interactions with the local electron. It is not clear, however, whether the
multichannel model is necessary, since a one-band Hubbard model has been proposed to
describe the physics of the copper oxide based high-Tc superconductors [10].

The above physical picture of FL and non-FL behaviour stems from strong electron–
electron correlations; however, it is well known that there is another way to prohibit
fluctuation of the local electron, namely by considering electron–phonon interactions, which
play a remarkable role in theories of superconductivity [11] and mixed-valence systems [12].
In the following we intend to discuss the FL–non-FL transition when there exist not only
multichannel electron–electron correlations but also electron–phonon interactions. The key
result we obtained in this paper is that, at the strong interaction limit, onlyone channel
of conducting electrons is necessary to get the FL–non-FL transition andit is the phonon
effects, rather than the electron correlation, that controls the behaviour of the system.

The arrangement of the paper is as follows: in section 2, we raise the model Hamiltonian
including phonon effects and then bosonize it to a simple form. In sections 3 and 4, we
map the model Hamiltonian to the SC Kondo Hamiltonian by comparing their partition
functions and establishing equivalence at operator level. Finally, we give our discussions
and conclusions in section 5.

2. The model Hamiltonian and its bosonization

There are two kinds of electron–phonon interaction: conduction electron–phonon interaction
and local electron–phonon interaction. The former can be incorporated into the electronic
kinetic energy, leading only to mass renormalization in the mean-field approximation, so we
ignore it and only study the latter. Moreover, as we show in the appendix, when we consider
the local electron coupling to the nearest-neighbouring ions and only retain longitudinal
long-wavelength acoustical phonons, we can treat the three-dimensional phonons as one-
dimensional phonons. In addition, allowing for a single impurity it is sufficient to consider
only the radial motion of the conduction electrons in each channel; this is equivalent to a
one-dimensional problem in half-spacex > 0, or to an another representation which retains
the left-moving electrons and allowsx to range over the whole space−∞ < x <∞. After
the above considerations we write the following model Hamiltonian (¯h = 1):

H = H0+He−e +He−p
H0 = ivF

∑
l

∫ ∞
−∞

dx9†l,L(x)
d

dx
9l,L(x)+ up

2

∫ ∞
−∞

[
52(x)+ (5φ)2]dx

He−e = j
[
9
†
0,L(0)d + d†90,L(0)

]+∑
l

Vl9
†
l,L(0)9l,L(0)

(
d†d − 1

2

)
He−p = λ ∂

∂x
φ(0)

(
d†d − 1

2

)
. (1)

In the above,H0 describes kinetic energy of conduction electrons and phonons,9
†
l,L(x)

and9l,L(x) are spinless left-moving conduction electron fields with channel indexl, φ(x)
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denotes phonon field and5(x) is the corresponding momentum field;He−e describes
the hybridization and screening between conduction electrons and local electron,d and
d† operators correspond to a localized orbital, as required by symmetry, the localized
impurity hybridizes only with one channel,l = 0; He−p describes the local electron–phonon
interactions,λ is the coupling coefficient, andup denotes phonon velocity. When we retain
only the first term inH0 andHe−e, it is just the usual MCRL model Hamiltonian. Defining
a bosonic field8l,L(R)(x)

8l,L(R)(x) = 1

2

[
φl(x)±

∫ x

−∞
5l(x

′)dx ′
]

where fieldφl(x) and its conjugate momentum5l(x) satisfy the standard commutation
relation, we can represent left- (right-) moving electrons as follows [12]:

9l,L(R)(x) = 1√
2πa

e∓i
√

4π8l,L(R)(x). (2)

Then the bosonic form of the Hamiltonian (1) is

Hb = (4πρ)−1
∑
l

∫ [
52
l (x)+ (∇φl)2

]
dx

+ j√
2πa

[
ei
√

4π80,L(0)d + d†e−i
√

4π80,L(0)
]

+ 1√
π

∑
l

Vl
∂

∂x
8l,L(0)

(
d†d − 1

2

)
+λ ∂

∂x
φ(0)

(
d†d − 1

2

)+ up
2

∫ [
52(x)+ (5φ)2]dx (3)

whereρ = (2πvF )−1 is the density of states at the Fermi energy, anda−1 is the momentum
cut-off. For convenience, we have included the right-moving electrons in the first term of
the Hamiltonian (3) with the understanding that they have no effect on the dynamics of the
original Hamiltonian. Employing the unitary transformation

U1 = exp

{
i

[√
4πρ

∑
l

Vl8l,L(0)+ λ

up

∫ 0

−∞
5(y)dy

] (
d†d − 1

2

)}
and rotating the boson fields8l,L(0) to their principal axes as

8̃0,L

8̃1,L

.

.

.

 = =W

80,L

81,L

.

.

.


we find that the boson fields̃8l,L(0) (l > 0) decouple from the local orbital when the first
line elements of the unitary matrixW are chosen as

W00 = (1− δ0/π)(1+ γ )−1/2

W0l = −(δl/π)(1+ γ )−1/2 (l > 0)

with

γ = −2
δ0

π
+
∑
l

(δl
π

)2
. (4)
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The phase shift of the electrons in thelth channel is given byδl = πρVl . Then, the
Hamiltonian (2) becomes

H̃b = U1HbU
†
1 = (4πρ)−1

∫ [
5̃2

0(x)+ (5φ̃0(x))
2
]
dx + up

2

∫ [
52(x)+ (5φ(x))2]dx

+ j√
2πa

{
exp

(
i

[√
4π(1+ γ )1/28̃0,L(0)− λ

up

∫ 0

−∞
5(y)dy

])
d + h.c.

}
(5)

in which the free scalar fields̃φl (l > 0) have been omitted. It deserves to be pointed out
that if we setλ = 0 in the above expression, we obtain the transformed solution about the
usual MCRL model after the same steps [7], which is expressed as

H̃b0 = (4πρ)−1
∫ [
5̃2

0(x)+ (5φ̃0(x))
2
]
dx

+ j√
2πa

{
exp

(
i
[√

4π(1+ γ )1/28̃0,L(0)
])
d + h.c.

}
. (6)

In the following we plan to continue the investigation based on Hamiltonian (5) and analyse
it in two aspects. Firstly, we calculate its partition function, and secondly we map it onto
another Hamiltonian at operator level.

3. Calculation of the partition function

Expanding the two independent boson fieldsφ̃0(x) andφ(x) as follows:

φ̃0(x) =
∑
k

1√
L

1√
2|k| (ake

ikx + a†ke−ikx)

φ(x) =
∑
k

1√
L

1√
2|k| (bke

ikx + b†ke−ikx) (7)

in which ak (bk) anda†k (b
†
k) satisfy the standard bosonic commutation relation, we obtain

H̃b = (2πρ)−1
∑
k

|k|a†kak +
∑
k

up|k|b†kbk

+ j√
2πa

{
exp

(
i
√

4π(1+ γ )1/2
∑
k<0

1√
L

1√
2|k| (ak + a

†
k)

)

× exp

(
i
λ

up

∑
k

1

k
√
L

√|k|
2
(bk + b†k)

)
d + h.c.

}
. (8)

The above Hamiltonian can be divided as:̃Hb = H̃0 + H̃1. H̃0 = H̃01 + H̃02 contains
two independent free fields, whilẽH1 describeseffectivehybridization between the local
electron and conduction electrons under the influence of electron–electron and electron–
phonon interactions. In the interaction picture (withβ the inverse temperature), the partition
function

Z = Tr
(

e−βH̃0T e−i
∫ −iβ

0 H̃1(t)dt
)

whereH̃1(t) = eiH̃0t H̃1e−iH̃0t and T is the time ordering operator. The partition function
can be expanded asZ = ∑n Zn with respect toH̃1. When performing the trace over the
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impurity’s configurations, we find thatZn vanishes for oddn, while for evenn we obtain
Zn = Z′n + Z′′n with

Z′n =
∫ β

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1 Tr

(
e−(β−τn)H̃01Ae−(τn−τn−1)H̃01A† · · ·A†e−τ1H̃01

)
×Tr

(
e−(β−τn)H̃02Be−(τn−τn−1)H̃02B† · · ·B†e−τ1H̃02

)
(9)

with

A = j√
2πa

exp

[
i
√

4π(1+ γ )1/2
∑
k<0

1√
L

1√
2|k| (ak + a

†
k)

]

B = exp

[
i
λ

up

∑
k

1

k
√
L

√|k|
2

(
bk + b†k

)]
.

Here tracing has been performed in two independent subspaces because there exists no
overlap between the two bosonic fields. The expression forZ′′n is obtained by interchanging
A↔ A†, B ↔ B†. It can be proved thatZ′n = Z′′n . If we define

A(t) = e−itH̃01AeitH̃01 B(t) = e−itH̃02BeitH̃02

then

Z′n = Z0

∫ β

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1〈A(iτn)A†(iτn−1) · · ·A†(iτ1)〉

×〈B(iτn)B†(iτn−1) · · ·B†(iτ1)〉 (10)

whereZ0 = Tr(e−βH̃0). Now, we evaluate the thermodynamic expectation values using the
strategies of Schotte [13] to obtain the partition function as

Z = 2Z0

[
1+

∞∑
n=1

( j√
2πa

)2n
∫ β

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1

× exp

{
n∑

ν>ν ′
(−1)ν+ν

′(
1+ γ + λ2

2πu2
p

)
ln
(τν − τν ′

βx̄0

)}]
(11)

wherex̄0 satisfy

x̄
1+γ+ λ2

2πu2
p

0 = (vFβk0)
−(1+γ )(upβk′0)

− λ2

2πu2
p

and k0 and k′0 are two fields’ respective momentum cut-offs. The form of the partition
function is the same as that of the following Kondo Hamiltonian

Hk =
∑
σ,k

h̄vF ka
†
k,σ ak,σ + J‖Szsz(0)+ 1

2J⊥
[
S+s−(0)+ s+(0)S−] (12)

with

J‖ = 2ρ−1

[
1− 1√

2

(
1+ γ + λ2

2πu2
p

)1/2
]

J⊥ = 2(2πa)1/2j. (13)

In addition, if we setλ = 0, it will recover the partition function of the MCRL model,
which is the same as [6]. For the present model, the quantityγ + λ2

2πu2
p

takes the place ofγ

in the MCRL model. We will discuss later that this will alter the phase transition condition.
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4. Hamiltonian mapping at operator level

In this section we intend to further demonstrate the similarity between the current model
and the MCRL model at operator level. First we transform the bosonic fieldφ(x) and its
momentum field5(x) in (5) using a new bosonic field as follows

φ(x) = − 1√
2

[
φ′(x)−

∫ −x
−∞

5′(x ′)dx ′
]

5(x) = − 1√
2

[
5′(x)+ ∂

∂x
(φ′(−x))

]
(14)

whereφ′(x) and5′(x) satisfy
[
φ′(x),5′(y)

] = iδ(x − y). Now the two bosonic fields,
which are contained in the exponent of the non-diagonal term in (5), take on the same form.
Next we expect to modulate the velocities of the two free fields in order to make them
identical, so we consider the following transformation

φ′(x) = φ̃(ηx)
5′(x) = η5̃(ηx) (15)

whereη is a non-zero constant. It is easy to prove that
[
φ̃(x), 5̃(y)

] = iδ(x − y). Under
this transformation the quadratic term changes as∫ [

5′2(x)+ (5φ′(x))2
]
dx = η

∫ [
5̃2(x)+ (5φ̃(x))2

]
dx. (16)

Adopting η = (2πρup)−1, this scale stretching (for phonons only) will match the sound
velocity to the Fermi velocity of the conduction electrons.

After (14) and (15), Hamiltonian (5) becomes

H̃b = (4πρ)−1

{∫ [
5̃2

0(x)+ (5φ̃0(x))
2
]
dx +

∫ [
5̃2(x)+ (5φ̃(x))2

]
dx

}
+ j√

2πa

{
exp

(
i

{√
4π(1+ γ )1/2

[
φ̃0(0)+

∫ 0

−∞
5̃0(x

′)dx ′
]

+ λ√
2up

[
φ̃(0)+

∫ 0

−∞
5̃(x ′)dx ′

]})
d + h.c.

}
. (17)

Finally, we combine fields̃φ0(x) and φ̃(x) in the following form

φ̄(x) = 1√
c2

1 + c2
2

[
c1φ̃0(x)+ c2φ̃(x)

]
5̄(x) = 1√

c2
1 + c2

2

[
c15̃0(x)+ c25̃(x)

]
=
φ (x) = 1√

c2
1 + c2

2

[
−c2φ̃0(x)+ c1φ̃(x)

] =
5 (x) = 1√

c2
1 + c2

2

[
−c25̃0(x)+ c15̃(x)

]
(18)

wherec1 =
√
π(1+ γ ) andc2 = λ/

√
2up. So we obtain

H̃b = (4πρ)−1
∫ [

5̄2(x)+ (5φ̄(x))2
]
dx

+ j√
2πa

{
exp

(
2i
√
c2

1 + c2
2 8̄L(0)

)
d + d† exp

(
−2i

√
c2

1 + c2
2 8̄L(0)

)}
(19)
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where

8̄L(x) = 1

2

[
φ̄(x)+

∫ x

−∞
5̄(x ′)dx ′

]
.

In (19) we have omitted the free field∫ [=
5

2
(x)+ (∇ =φ (x))2

]
dx.

Up to now the form of (19) has been the same as that of (6). i.e., we relate the current
Hamiltonian to the usual MCRL Hamiltonian. One can easily find their differences: the

quantity
√

4π(1+ γ )1/2 in (6) is now changed into 2
√
c2

1 + c2
2 in (19), i.e.

√
4π(1+ γ )1/2 −→ 2

√
c2

1 + c2
2.

It is equivalent toγ −→ γ + λ2

2πu2
p
. This conclusion is exactly the same as that in section 3.

Applying a further canonical transformation

U2 = exp

[
−i
(√

8π − 2
√
c2

1 + c2
2

)
8̄L(0)(d

†d − 1
2)

]
Hamiltonian (19) can be mapped onto the anisotropic Kondo model defined in (12) and
(13).

Here we further explore the effects of the interaction between the phonons and the local
electrons on the dynamics of the conduction electrons. In fact, the phonon interaction in
Hamiltonian (1) takes a similar form to the screening conduction electrons, i.e., both the
phonon and the electron–hole pairs are scattered by the local electron at the origin. Hence
the phonons also take part in the combination of the electron–hole pairs, and contribute to
γ with their own phase shift.

5. Discussions and conclusions

In the above treatment, we relate the model including local electron–phonon interactions
to the usual MCRL model, so we can conveniently discuss the effects of phonons on
the FL–non-FL transition. From (12) and (13), one can see that, forγ + λ2

2πu2
p
< 1, the

model corresponds to an antiferromagnetic Kondo problem, and the system then takes on FL
behaviour; forγ + λ2

2πu2
p
> 1, the model corresponds to a ferromagnetic Kondo problem, and

the system then takes on non-FL behaviour. Now the transition point is atγc = 1−λ2/2πu2
p,

which is different fromγ = 1 in the case of the usual MCRL model. Obviously, in the
current model, the transition point moves to the left, i.e., the non-FL region expands and
the FL region shrinks. This result may be understood qualitatively from the following
picture. By including the local electron–phonon interactions, the local electron will fluctuate
less easily compared with the case where there is only local electron–electron interaction,
because its fluctuation is accompanied by local lattice distortion, just like the enhancement
of effective mass in the polaron problem [14]. In fact, the local electron–phonon interaction
is equivalent to an additional screening channel (see (3)), therefore the phase transition point
moves towards the FL region. We emphasize here, however, that the local electron–phonon
interaction plays the role of ananomalousscreening channel because there is no upper limit
π on its phase shift, so we may expect its non-trivial influence on the properties of the
MCRL model. This situation is similar to the problem of a two-state system coupled to a
phonon bath or a fermion bath. Although a fermion bath can be mapped onto a phonon
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bath via bosonization techniques, it is known that there exists a broken-symmetry transition
for a phonon bath, while there is no such transition for a fermion bath [16]. From the
definition ofγ we can re-evaluate the necessary channel number. In the case of sufficiently
strong screening, the phase shiftδl equalsπ , then γ = N − 2, whereN is the total
channel number. The necessary condition forcing the system to take on non-FL behaviour
is: N − 2+ λ2

2πu2
p
> 1. We find the minimum channel number decreases, and it need not be

three as in the case of non-phonon interactions. As an example, for strong local electron–
phonon interaction,λ > λc = (4πu2

p)
1/2, we need onlyonechannel in order to realize the

FL–non-FL transition. Therefore,it is the local electron–phonon interaction, rather than the
local electron–electron interaction, that determines the behaviour of the system. Moreover,
we want to point out that the phonon-induced FL–non-FL transition takes place only at very
low temperature. In fact, in the current problem there exists two scales: the Fermi energy
εF and the Debye frequencyωD, so there exists a characteristic temperatureT ∗(ωD). When
T > T ∗(ωD) the phonons make no contribution to the renormalization of the hybridization
parameterj , therefore, for sufficiently smallγ the system will take on FL behaviour; while
when T < T ∗(ωD) the phonons affect renormalization ofj and the system may take on
non-FL behaviour.

We can investigate the properties of the current model with help of the known results of
the SC Kondo model and its related models, such as the dissipative two-state system [17].
The first property under consideration is the contribution of the local electron to the specific
heat1C at low temperature. Forγ + λ2

2πu2
p
< 1, we have the linear relation1C ∼ T , while

for 2> γ + λ2

2πu2
p
> 1, the specific heat varies non-linearly with the temperature

1C ∼ T γ+
λ2

2πu2
p
−1
.

The second property is the dynamics aboutP(t) = 〈nd(t)〉 of the local impurity at low
temperature, assuming that at timet = 0 the local orbital is occupied by an electron
nd(0) = 1. For 0< γ + λ2

2πu2
p
< 1, P (t) is described by damped relaxation, while for

γ + λ2

2πu2
p
> 1, P (t) = 1. The transition from FL to non-FL behaviour atγc = 1− λ2

2πu2
p

can

be seen clearly from the above results.
Before drawing conclusions, we want to point out the power-law dependence of the

specific heat on temperature1C ∼ T δ with δ ' 2/3 has been observed in the heavy-
fermion system UPdxCu5−x with x = 1 andx = 1.5 [2]. This unusual non-FL behaviour
deviates from the prediction of the two-channel Kondo model and it may be qualitatively
described by the present model. Recently, a three-channel resonant-level model with spin
has been proposed for non-FL behaviour in heavy-fermion systems [18] and further work
is needed to study the effects of phonons.

In conclusion, we have discussed the phonon effects on the MCRL model and found
that the model still undergoes the FL–non-FL transition when there is local electron–phonon
interaction, but the non-FL region expands and the FL region shrinks in comparison with
the usual MCRL model. In particular, for strong local electron–phonon interaction we need
only one channel in order to realize the FL–non-FL transition, and it is the phonon effects
that control the behaviour of the system.
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Appendix

In this section we discuss how to describe the local electron–phonon interaction. Although
in real physical problems the phonons are three dimensional, here we want to demonstrate
that the three-dimensional phonons can be substituted for one-dimensional phonons allowing
for their equivalence as far as their contributions to the partition function are concerned.
The real local electron–phonon interaction can be described as (the local electron is located
at the zero point):

H̃e−p = (d†d − 1
2)
∑
j

Qj · ∇V (R(0)
j ). (A1)

Here V denotes the potential function generated by an individual ion andR(0)
j is the

equilibrium position of the ion.Qj describes the displacement of thej th ion, which can
be expanded as [15]

Qj =
∑
k,σ

1√
2NMωk,σ

ξk,σ (bk,σ + b†−k,σ )eik·R(0)
j . (A2)

Here M is the ion mass,ξk,σ is the polarization vector which specifies the vibrational
direction of the ion for each wave vector andσ . The indexσ runs over those 3n values
of the normal mode, wheren is the number of atoms per unit cell. Each mode has its
own eigenfrequencyωk,σ . If we assume the local electron only interacts with the nearest-
neighbouring ions and only retain longitudinal acoustic phonons (σ is dropped), in the
long-wavelength limit we obtain

H̃e−p = (d†d − 1
2)
∑
k

gk(bk + b†−k) (A3)

wheregk = C/
√

2NM|k| andC =∑j ξk ·∇V (R(0)
j ) is a constant. When we calculate the

partition function, as we have done in section 3, the phonons’ contribution is only decided
by the spectrum densityJ (ω) = ∑k g

2
kδ(ω − ωk) [17], which depends on the dimension

of k space and the coupling coefficientgk. For current three-dimensional phonons with
coupling coefficientgk ∼ |k|−1/2, obviously we can give the same spectrum density if we
consider a kind of one-dimensional phonon with a different coupling coefficientgk ∼ |k|1/2,
i.e., we can write local electron–phonon interaction in the form

He−p = (d†d − 1
2)
∑
k

gk(bk + b†−k). (A4)

Note here the relation of the coupling coefficientgk about the mode ofk has changed. In
summary, if the dimension of the phonons is transformed from three to one and the relation
of the coupling coefficientgk about the mode ofk is transformed accordingly, the spectrum
densityJ (ω) will be reproduced, and subsequently so will the partition function. So far we
obtain the form in equation (1).
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